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1. Introduction

Human capital is essential for firms, particularly for activities like research and development

(R&D) and innovation. Unlike physical capital, firms do not own their employees, who have

the flexibility to leave with their inalienable human capital. While some separations reflect

organic reallocation of labor that could be beneficial to both the firm and the worker, many

labor departures are costly to the firms—especially if the human capital is valuable and

irreplaceable. Naturally, firms rank labor mobility as a top consideration, and economists

have studied how firms use wages and non-wage benefits to achieve the goal of talent retention.

It remains underexplored, however, how firms may strategically make operational decisions

to affect labor mobility and the long-term consequences of such decisions.

In this paper, we build a model to demonstrate that firms actively use their R&D decisions,

specifically the decision on the scope of innovation (general vs. specific innovation), to impact

labor mobility and talent retention. Our mechanism builds on a key premise of how firms can

affect human capital accumulation in the economy—much of the human capital of workers

is built on the job through carrying out tasks for the employer firms (Rosen, 1972). By

assigning workers to innovations with different scopes, these workers and firms accumulate

different types of knowledge capital—either narrowly focused and more specific to the firm,

or with more general applications and redeployable outside the firm.

The key mechanism of our model is a labor-based tradeoff behind a firm’s innovation

decisions. In specific, firms optimize the scope of R&D activities to influence the knowledge

capital their workers accumulate in conducting these tasks, which is key in determining firm’s

separation cost with labor, labor mobility, talent retention cost, and ultimately firm value.

General innovation fosters knowledge capital that is more redeployable for both the firm and

the worker, so workers who accumulate such capital are more likely to be poached. Specific

innovation activities, on the other hand, ties the worker more closely to the firm, but it incurs

larger knowledge destruction and higher separation cost if the worker turns out to be a bad fit

with the firm. Moreover, such trade-off varies endogenously with the workers’ career stages.

When a worker is young with limited track record, the firm’s own separation cost concern

dominates, while as the worker becomes more seasoned with proven quality, managing his
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outside option for retention purposes becomes the primary concern. Thus, our model predicts

changes in innovation scope with the worker’s tenure. Quantitatively, our model estimation

suggests that such a labor-based tradeoff is crucial, influencing 24% of observed innovation

specificity among U.S. firms.

Our model has several important motivations. First, it shows that firms go beyond utilizing

traditional labor-market tools, such as wages or benefits, to exert impacts on the human

capital fronts. This echoes the literature that shows firms use operational and financing tools

to affect the labor market (Matsa, 2010). Second, even though the mechanism could apply to

any human capital-intensive tasks, we use corporate innovation as our setting. This provides

superior data availability for our empirical and quantitative analysis. Importantly, this is

motivated by the broad literature on the importance of innovation and innovative labor, and

the recent literature that argues that not only the amount but also the direction and scope

of innovation are crucial (Acemoglu and Cao, 2015; Akcigit and Kerr, 2018; Mezzanotti and

Simcoe, 2023). Last but not least, the mechanism is influenced by the long-lasting literature

on general vs. firm-specific human capital (Becker, 1962; Hashimoto, 1981; Lazear, 2009).

Recent studies estimate the extent to which human capital is specific and thus non-portable,

taking it as an exogenous feature associated with the firm or the task (Yamaguchi, 2012;

Gathmann and Schönberg, 2010; Huckman and Pisano, 2006). Our results extend the idea

and imply that the portability of human capital is an active choice made by the firm.

Now we elaborate on our model. A firm hires inventors to perform innovative activities.

These activities may lead to profitable innovation; meanwhile, they also accumulate knowledge

capital for both the firm (new research process, new proprietary ideas, organizational capital)

and the inventors (i.e., new knowledge acquired in conducting the research). Importantly,

besides the level of R&D considered in classic innovation models, firms in our model also

decide on the scope of the innovative activities—they can engage the inventor to produce

either innovation specifically tied to the firm (specific innovation) or research with more

general applications (general innovation).

Inventors and firms face uncertainty regarding the match quality between them. High

match quality can be thought of as an inventor being well suited for the firm’s research

culture, environment, and direction. Neither the inventor nor the firm observes the match
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quality directly, but they can learn about it through the realized innovation outcomes. The

uncertain nature associated with innovation activities, however, hinders the learning process,

making the belief updating process gradual and slow-moving as in Moscarini (2005).

Each period, upon updating its belief of match quality, a firm can choose to terminate

a position if it is deemed sufficiently unprofitable and receive the scraping value of the

knowledge capital embodied in the firm. In the meantime, an inventor can be poached. Upon

receiving an outside offer, he can use it as a benchmark to negotiate higher compensation

with his current employer, or he can switch employment. A job switch will happen when the

present value generated with the current employer falls below the expected value arising from

matching the inventor with the outside firm; the latter depends on the amount of human

capital that the inventor can bring to his prospective employment.

Separation can lead to knowledge capital destruction, which is costly to both the firm

and the worker. Importantly, accumulating more specific knowledge capital can add to this

cost. When a firm engages in specific innovation, the resulting knowledge capital is less

redeployable, reducing the scrapping value to the firm in the event of job separations—we

call this the knowledge retention channel as it is related to how much a firm can redeploy the

knowledge. Concretely, one can think of these knowledge capital as new special equipments,

processes, and ideas that are harder for other researchers to redeploy when a key employee

with specific knowledge leaves.

Concurrently, as employees engage in highly specialized projects, they accumulate human

capital that is narrowly tailored and less effectively utilized in other firms, thereby reducing

the value associated with the outside offers. Moreover, from the perspective of the firm, the

workers’ devalued outside options can be construed as advantageous, helping it retain the

workers more easily. As the retained workers’ outside option becomes less valuable, it also

weakens their ability to bargain with the firm, leading to a larger share of the value created

accruing to the firm’s shareholders—we call this the labor retention channel as it is related

to the ability and cost associated with keeping an employee. Our model predicts that firms

will actively take into account these labor-based tradeoffs when choosing their innovation

specificity.

Importantly, the cost and benefit associated with the scope of innovation vary significantly
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with an inventor’s tenure cycle. When a firm first hires an inventor, there exists large

uncertainty regarding the quality of the new hire and whether he is well suited to the specific

position and task, thereby making retaining flexibility a first-order concern for the firm. As

the inventor’s tenure increases, the uncertainty gradually resolves. He also accumulates higher

human capital and thus is more likely to be poached by outside firms. When such outside

opportunities arise, the inventor can choose to switch employment or use them to bargain

with the current firm to increase his rent. At this point, retaining valuable employees and

bargaining efficiently with them become the firm’s primary concerns. As the firm shifts its

focus, it also tilts its innovation toward a more specific spectrum, facilitating its retention

and bargaining decisions.

To gauge the empirical relevance of the channels described above, we estimate the model

using granular data on corporate patenting activities and inventors’ career trajectories. Our

data set includes more than 7 million US inventors who filed and were successfully granted at

least one patent at the United States Patent and Trademark Office (USPTO) from 1976 to

2018. For each inventor, we observe the patent production records filed with USPTO, from

which we can track the firms she/he worked at, and we also infer the tenure of an investor in a

firm and the mobility from such records by tracing changes of employer firms (Bernstein, 2015;

Brav, Jiang, Ma, and Tian, 2018). Inventor age data are from Kaltenberg et al. (2021). We

also observe the characteristics and nature of the innovation, patent specificity in particular.

Using patent citation information, we construct patent specificity following Hall (2007) by

capturing the scope of the patent as potentially useful for other technological fields.

Importantly, our estimation allows different firms to have comparative advantages with

respect to innovations with varying scopes, which echoes Akcigit and Kerr (2018). Such

comparative advantages can help explain the observed specialization of innovation scope

across firms, as shown in Akcigit and Kerr (2018). On top of that, firms will also actively

deviate from their most efficient area, considering the labor-based tradeoff. The direction

and extent of the deviation can vary across inventors working for the same firm and for the

same inventor-firm pair over different years of the inventor’s tenure cycle. In our estimation,

we allow the two mechanisms to jointly shape the model-predicted innovation scope, which

we then map to the data. In the subsequent counterfactual analysis, we will keep firms’
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innovation comparative advantage as given while varying frictions that govern the labor-based

tradeoff, thus teasing out the effect of the latter.

Overall, our model matches key patterns observed in the data regarding firms’ innovative

activities, patenting output, and inventor turnovers. To further validate the model and

highlight the key mechanisms at work, we examine the life cycle patterns of inventor mobility

and innovation specificity. These conditional moments are not directly targeted in our

estimation procedure. First, we document that inventors’ mobility exhibits a hump-shaped

pattern. When a firm newly hires an inventor, the likelihood of a turnover will stay low initially

due to the large uncertainty pertaining to the investor’s quality, and it keeps increasing for

the first few years as additional information arrives. The turnover probability will peak

among inventors with medium tenure, followed by a monotonic decline as inventors’ tenure

further increases. Second, as inventors’ tenure increases, the scope of their innovation also

becomes increasingly firm-specific, which partially contributes to the declining trend of

inventor mobility later in their careers. These patterns capture key predictions from the

model and are also present in the actual data.

Using the estimated model as a laboratory, we examine the extent to which firms’ labor

market considerations shape their innovation decisions using two sets of counterfactual

analyses. First, we make inventors’ quality fully revealing to the firm, thus eliminating any

uncertainty and the resulting need to retain flexibility. Firms’ innovation scope would become

14% more specific in this case, and the change is mainly concentrated among inventors

with shorter tenures. Second, we remove the rent splitting consideration by letting firms

re-optimize, maximizing the joint surplus between the firm-inventor pair (instead of focusing

on the firm value only). The result shows that firms’ innovation would become 24% less

specific, with the effect showing up most strongly among more seasoned inventors.

Next, we examine how such choices of innovation specificity, in turn, influence the value

of the firm and the surplus accrues to the inventors. To this end, we perform additional

counterfactual analyses by comparing our baseline model predictions to cases when the

inventors’ specificity is reduced exogenously. Our results suggest that lowering the innovation

specificity by a quarter will lead to a 21% increase in workers’ surplus, while firms’ surplus

will decline, but by a smaller extent. The results imply that the firm is choosing an innovation
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scope that is too narrow, which helps them to establish better bargaining positions with

employees at the expense of a lower joint surplus.

Lastly, we validate our model mechanism by examining the impact of changes in the

enforceability of noncompete agreements across different states in the US. Such changes affect

firms’ concerns regarding employee mobility and retention, which ultimately leads to changes

in their innovation scope as our model predicts. Indeed, we find that firms broaden their

innovation scope when the enforcement of noncompete agreements becomes stricter, with

the effect being particularly pronounced among seasoned inventors. The result confirms the

model premise that firms actively choose their innovation scope to address labor-related

concerns.

This paper contributes to the literature on on-the-job learning and human capital accu-

mulation within a firm. This literature shows that on-the-job human capital accumulation

drives early career outcomes and wage dynamics (Rubinstein and Weiss, 2006; Arellano-Bover,

2024). Firms as a driver of variation in on-the-job learning have long received theoretical

attention (e.g. Rosen (1972), Gibbons and Waldman (2006)), but accompanying empirical

studies on this front are still limited. The key contribution of our paper is to argue that

firms, through proactive operational decisions, R&D in particular, play an active role in

determining the type of human capital accumulated on the job and to provide a model to

quantify the impact of this channel.

A key component in our mechanism is the economic properties of firm-specific human

capital, a classic idea dating back to at least to Becker (1962). Numerous theories suggest

that firm-specific human capital impacts employee mobility and career outcomes. Recent

studies use structural analysis to gauge the extent of firm-specific human capital within

certain occupations, like cardiology surgeons and finance professionals (Huckman and Pisano,

2006; Gao et al., 2023). Just as we deviate from the on-the-job learning literature above, the

proactive role of firm decisions is the key new insight in our paper. Instead of estimating

the proportion of firm-specific human capital as an exogenous parameter, we endogenize

the fraction of firm-specific human capital as a result of the different innovative activities

undertaken by firms.

Our findings also connect to recent studies on labor mobility and firm investments.
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Empirical investigations in this literature often use changes in the enforceability of non-

compete agreements—for example, Jeffers (2019) finds that increases in the enforceability of

such agreements lead established firms relying more on knowledge-intensive occupations to

increase their investment rate. The contribution of our paper is two-fold. First, we deviate

from the reduced-form approach and build a structural model that can help us estimate

important economic parameters and consider counterfactual economic scenarios. Second, we

use detailed innovation data and measurements to dive deep into not only the levels and

rates of investment but also the composition of general and firm-specific types.

Finally, our paper adds to the discussion of firms’ endogenous policy design in the presence

of labor market frictions (Matsa, 2010). More recent studies, including Michaels et al. (2019)

and Monacelli et al. (2023), estimate models with firms’ endogenous investment and financing

decisions, illustrating that firms actively use leverage to influence their bargaining position

with workers. In their models, labor market considerations can also trigger an impact on

firms’ real decisions through financing. Marimon and Quadrini (2011) and Chen et al. (2023)

show that contracting and agency frictions between firms and workers affect the efficiency

of firm investment and the resulting human capital accumulation. We show that firms can

directly influence their interaction with workers by choosing the type of innovation. We

explore how the influence of such decisions varies over workers’ life cycles and examine the

implications on worker surplus.

2. An Illustrative Example

Let’s consider a scenario where a firm hires an inventor to pursue innovation activities.

On day 1, the firm determines the type of innovation to pursue. On day 2, the pair produces

innovation output, which results in an immediate cash flow and simultaneously fosters the

accumulation of knowledge capital. On day 3, the inventor receives an outside offer and has

to decide if he wants to switch job or keep his current employment. The firm and inventor

then receive their final cash flows. For simplicity, we assume there is no discounting.

We model the firm’s innovation decision as a binary choice. They can opt to pursue either

specific or general innovation. Both of these activities result in the production of q units

of innovation output during the second period. The output is then split 50-50 between the
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inventor and the firm. Here, q can take one of two values: {q̄, q}, which correspond to the

quality of the match between the firm and inventor being good or bad, respectively. The firm

and inventor can have their priors about the likelihood of a high-quality match on day 1, but

the uncertainty cannot be fully resolved until the output is realized on day 2.

Pursuing specific innovation generates 1 unit of specific knowledge capital. The utilization

of the specific knowledge capital depends significantly on both the firm’s infrastructure and

the expertise of the inventor. Therefore, if the inventor chooses to change job, this specific

knowledge capital will be lost and will not generate any future value for either the firm or the

inventor. Alternatively, the firm can opt for more general innovation, which yields 1 unit of

general knowledge capital. In this case, we assume that half of the general knowledge capital

is embodied in the firm, and the other half in the inventor. This means that if the inventor

decides to leave the firm on day 3, he can take 0.5 unit of the accumulated general human

capital with him to the new employer, while the firm retains the remaining 0.5 unit.

On day 3, if the firm and inventor stay matched, they generate an additional cash flow of

q. The inventor will also receive an outside offer at the beginning of day 3. He can bring any

general knowledge he has accumulated to the new firm, where it can generate a return of ξ+

per unit of knowledge. If the inventor chooses to switch to the new employer, the firm will

terminate the project prematurely, resulting in a liquidation value of ξ− per unit of general

knowledge capital. The firm also has the option to terminate a project even without an

outside offer. We assume ξ+ > q̄ > ξ− > q > 0, suggesting that for any firm and inventor

who have pursued general innovation in period 2, it is strictly more rewarding for the inventor

to take the outside opportunity, and therefore, separation will always happen. However,

separation will be in the firm’s best interest only if the match quality is low. Conservely,

if the firm and inventor have engaged in specific innovation previously, they should always

maintain the match, as separating would lead to zero values for both parties. In this case, the

firm and inventor will receive the project cash flow, contingent on the quality of their match.

The table below outlines the payoffs for the firm and the inventor, taking into account

the separation decision on day 3 analyzed above:
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Firm’s payoff Inventor’s payoff

q = q̄ q = q q = q̄ q = q

General 0.5q̄ + 0.5ξ− 0.5q + 0.5ξ− 0.5q̄ + 0.5ξ+ 0.5q + 0.5ξ+

Specific 0.5q̄ + 0.5q̄ 0.5q + 0.5q 0.5q̄ + 0.5q̄ 0.5q + 0.5q

The results presented above indicate that the choice of innovation scope can significantly

impact the firm’s overall payoff, primarily through two channels. The first one is the separation

cost channel—when the firm pursues more specific innovation, that makes it more difficult

for the firm to redeploy the knowledge capital accumulated during the process when the

position is terminated, either due to the inventor switching jobs or the firm liquidating the

project. The second channel operates through employee retention, which suggests that more

specific innovation not only hinders the firm’s ability to redeploy knowledge but also reduces

the value of the inventor’s human capital to outsider firms. This, in turn, decreases the

likelihood of the firm losing its valuable employee to a labor market competitor. The relative

significance of the two channels can vary among firms and inventors. The separation cost

channel can become the dominant force when q = q, or in general, when the quality of the

match is relatively low and job termination is likely to take place. The employee retention

channel, instead, will become a more important concern if the match quality is likely good,

so the firm has a strong desire to keep the current employee and to fend off the potential

competition from the labor market.

3. Model

In this section, our goal is to develop a dynamic model in which heterogeneous innovation

activities that firms pursue result in distinct effects on their labor separation cost and retention

decisions. Our model formalizes the intuition from Section 2, embedding factors such as

endogenous R&D activities, human capital accumulation, and wage setting. The richness

of these features allows us to match the observed patterns on firm R&D activities. Using

this framework, we analyze, quantitatively, the potential impact of shifts in these activities

on the firm value and the career outcomes of the inventors. Within this model, workers
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choose where to supply their human capital, considering the possibility of transitioning to new

employers when such opportunities arise. They might also leverage these outside opportunities

to renegotiate wages with their current employers. Firms make decisions on their R&D

investment, and dynamically adjust the type of their innovation activities, anticipating how

such decisions will interact with the workers’ choices.

3.1. Producing innovation

Our model features a continuum of innovative jobs in an economy. Each job consists of

a firm, f , that hires an inventor, j, to engage in research and development activities. Let

nj,f,t to denote the unit of innovative output generated by inventor j, who works for firm f

at time t:

nj,f,t = Poisson (a · eκ·µj,f,t · Φj,f,t) . (1)

We use a Poisson process to reflect that innovation occurs only infrequently and is associated

with uncertainty. The intensity of innovation, characterizing the frequency at which an

inventor-firm pair realizes innovative outcomes, equals (a · eκ·µj,f,t · Φj,f,t), where a is a con-

stant, scale parameter, and µj,f represents the match quality of the inventor-firm pair, which

we discuss below in Section 3.1.1. Holding all else equal, a better quality match is associated

with heightened intensity to produce innovation. Φ(·) is the knowledge-to-innovation function:

Φj,f,t = k1−ρ
j,f,t, r

ρ
j,f,t, (2)

where k stands for the level of knowledge capital stock owned by the firm-inventor pair at the

start of period t, which includes the firms’ research notes, existing programs, specific research

practices, and the workers’ human capital. A firm can also boost its innovation output in a

given year by increasing its R&D expenditure, rj,f,t.

Firms’ innovation activities in our model differ in their scope. A firm-inventor pair can

engage in more targeted innovative activities, leading to innovation outputs with a narrower

scope, or they can choose projects with broader applications, which leads to innovations that

can be applied widely across disciplines. We use ωj,f,t to denote the scope (specificity) of

innovation projects pursued by the inventor-firm pair in period t. Like a firm’s R&D spending,
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its scope of innovation is also a choice variable that the firm needs to decide every period.

The return from the inventor-firm’s current period of innovation activities equals:

yj,f,t = π · nj,f,t − rj,f,t − f, (3)

where π measures the capitalized return per unit of innovation output (i.e., the discounted

future cash flow generated by the innovation), and f is the fixed operating cost per period.

3.1.1. Match quality. We model the quality of an inventor-firm pair, µj,f as a binary

variable—with {µ = 1} indicating a good quality match and {µ = 0} indicating otherwise.

We allow µj,f to vary across inventors and over time when the same inventor is hired by

different firms. Hence, as in previous studies (see e.g., Jovanovic, 1979; Nagypál, 2007), our

modeling of µ carries a pair-specific component.

Empirically, we can think of µ as capturing whether an inventor’s research style and

interest fit the institution’s future direction and strategic priorities. For example, is there

potential synergy with teammates and team knowledge? Does the working environment

(collaborative style, value, etc.) fit with the inventor’s production process? Does the position

provide the appropriate incentive for the inventor to work hard to accumulate human capital,

and whether such incentives align with his career objectives? These factors are hard to

observe or ascertain ex-ante, but they play a crucial role in shaping the productivity of

individuals at their workplaces.

When an inventor is first matched with a firm, the pair-specific true match quality follows

a common Bernoulli distribution:

P {µ = 1} = 1− P {µ = 0} = q. (4)

The distribution is common knowledge, but the realization of µj,t is unobservable to any

agents in the model. Hence, our model features symmetric learning, wherein all agents extract

information about the match quality from observed signals and learn in a Bayesian fashion. As

Equation (1) suggests, the innovation intensity is contingent upon µ, and hence, the realized

innovation output can serve as a signal to infer µi,b. When a firm and inventor experience
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high levels of innovative activity, they are more inclined to associate a greater likelihood

with the match being of good quality. We use pj,f,t to denote the perceived probability that

an inventor-firm pair is good quality based on the current information set, Ft. Bayesian

updating implies:

pj,f,t+1 =
pj,f,t · P {nj,f,t|µj,f = 1,Ft}

pj,f,t · P {nj,f,t|µj,f = 1,Ft}+ (1− pj,f,t) · P {nj,f,t|µj,f = 0,Ft}
. (5)

3.1.2. Knowledge capital accumulation. Knowledge capital depreciates at a rate δ, and

the law of motion for knowledge capital can be characterized by:

kj,f,t+1 = (1− δ) · kj,f,t + Li,f,t. (6)

Here, Lj,f,t stands for the new knowledge capital acquired in the current period:

Lj,f,t = e−`·ki,j,t · ni,j,t. (7)

The firm and the inventor gain knowledge through their experience of producing innovation,

ni,j,t. ` determines the speed at which knowledge capital accumulates. If ` = 0, then

knowledge capital is accrued at a steady rate. If ` < 0, then the accumulation of knowledge

capital decelerates as the level of existing knowledge grows. Figure 5 illustrates the law of

motion for knowledge capital as described above.

The specificity of the newly accumulated knowledge capital, Lj,f,t, is determined by the

firms’ endogenous choice, ωj,f,t. If a firm chooses to engage the inventor in more specific

scientific exploration in the current period, that results in more specific knowledge capital

being accumulated. Conversely, if a firm chooses a broader scope, it helps accumulate more

general knowledge. Given the law of motion for knowledge capital specified by equation (6),

we can derive the relation that governs the firm’s choice of ωj,f,t, and the specificity of the
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knowledge capital stock, χ:

χj,f,t+1 =
χj,f,t · (1− δ)kj,f,t + ωj,f,t · Lj,f,t

kj,f,t+1

, (8)

where χj,f,t serves as an indicator for the blend of knowledge capital types—namely, general

and specific—that the firm-inventor pair possesses. The utilization of specific knowledge

capital pivots on the firms’ infrastructure and the inventors’ expertise; hence, such knowledge

capital is embodied in the firm-inventor pair. Regarding general knowledge capital, we need

to distinguish its ownership more precisely because the firm or the inventor can keep using

it upon a turnover. Therefore, ownership would play a critical role in shaping the firm and

inventor’s respective outside options.

To this end, we assume that in every period, a fraction, η, of the newly accumulated

knowledge resides with the firm and is embedded in the firm’s intangible capital stock—one

can think of these as research notes generated in the process, improved research practice

within the firm, or knowledge accumulation to other research staff in the firm. The remaining

(1− η) fraction goes to the inventor and becomes his human capital. We use λj,f,t to measure

the fraction of total knowledge capital embodied in the firm. Equation (6) implies that:

λj,f,t+1 =
λj,f,t · (1− δ)kj,f,t + η · Lj,f,t

kj,f,t+1

. (9)

A unique feature of our framework is that we separately model the scope and ownership

of knowledge capital. The scope of knowledge capital will influence innovation production, as

we allow heterogeneous productivity of specific versus general knowledge capital stock, and

the relative productivity can also vary endogenously as firms choose projects with varying

scopes. The specificity of human capital also has important implications when a firm and its

inventor separate, in which case, both parties will find it difficult to redeploy the knowledge

if it is associated with a high degree of specificity. Thus, there will be more substantial costs

in the job transitioning process. In contrast, the ownership of knowledge capital does not

directly influence production. However, it will become consequential when the possibility of

separation arises, in which case, both parties are entitled to redeploy the knowledge capital

embodied in them.
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3.1.3. Job separation and the loss of knowledge capital. The evolution of knowledge

capital is also influenced by separations between firms and workers. In our model, job

separations arise endogenous for two reasons. First, an inventor may be poached by a

competitor in the labor market, leading to the dissolution of the current inventor-firm pairing

if the current employer is unable to match the competitor’s offer. The conditions under which

such separation occurs are derived in Section 3.3 below. Second, a firm may terminate a

position if it becomes unprofitable.

When an inventor is poached by an outside firm, he can bring the fraction of his human

capital that is general to the prospective employer. Consequently, the inventor’s continuation

value is contingent upon the productivity of this newly formed employment pair. The firm

that loses the inventor has to terminate the position and receive a liquidation value from the

knowledge capital that is embodied in the position. A firm also has the option to voluntarily

terminate a position, even when the inventor does not receive an outside offer. In such cases,

the firm receives the same liquidation value, and the inventor exits the market1 and receive

his reservation utility, which we normalize to zero.

To simplify the notation throughout the remainder of this paper, we will also use
(
kFf,t
)

and
(
kIj,t
)

to denote the knowledge capital owned by the firm and the inventor, respectively:

kFf,t ≡ λj,f,t(1− χj,f,t) · kj,f,t (10)

kIf,t ≡ (1− λj,f,t)(1− χj,f,t) · kj,f,t, (11)

Let ξ be the price of knowledge capital. The cash flow that the firm receives from either a

voluntary or involuntary liquidation equals ξ · kFf,t, where kFf,t is the amount of knowledge

capital embodied in the firm, specified by equation (10). This liquidation value constitutes

the firm’s outside option.

Lastly, jobs can also be destroyed for exogenous reasons, which occurs at an annual rate of

τ . The inventors who exit due to job terminations or for exogenous reasons will be replaced

by a group of novice inventors joining the industry, each of whom is endowed with k̊ units of

1This assumption is not restrictive as termination only occurs for inventors with relatively low levels
of human capital. Therefore, we can interpret their exits as them rejoining the labor force and behaving
similarly to the novice inventors.
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general human capital.

There is also a large number of potential entrant firms that will create new jobs upon

entry, and existing firms can also open up new positions. Both new entrants and existing

firms pay a sunk cost of ι to create a new job and participate in the labor market. We use

φ to denote the mass of new jobs created in the industry. Given ι, φ is determined in the

equilibrium by the job creators’ indifference condition. When a new position is created, we

assume that the firm will first try to poach a seasoned inventor, in which case, they receive an

additional signal regarding his potential match quality: ν̊ ∼ N (µ̊, σ2
ν). If σν →∞, it means

that the signal is uninformative, and if σν → 0, it means the match quality is fully revealed.

We use p̊ to denote the posterior probability that the new match has good quality:

p̊ =
q · pdf (̊ν |̊µ = 1)

q · pdf (̊ν |̊µ = 1) + (1− q) · pdf (̊ν |̊µ = 0)
. (12)

If the investor declines the offer, the firm will turn to a novice inventor, in which case,

they start with an uninformed prior—the probability of the match being good equals the

unconditional mean of q.

The firms that have successfully recruited either a reasoned or a novice inventor will

acquire knowledge capital from the market, which we denote as k̊. This newly acquired

knowledge k̊ is then combined with the inventor’s human capital and forms the knowledge

base of the new inventor-firm pair. k̊ is an endogenous decision to be made by the job creator.

We use ξ to denote the market price at which firms liquidate or acquire knowledge capital,

which is pinned down in the equilibrium by the market clearing condition.

3.2. Value function

The timeline of the model is as follows. At the beginning of each period, the firm

makes its decision on R&D expenditure (r) and sets innovation scope (ω). The firm and

inventor then produce and collect innovation outputs. In the meantime, existing knowledge

capital depreciates, and the firm inventor pair also accumulates new knowledge through their

innovation activities. At the end of the period, inventors receive external offers and decide if

they switch to the new firm or stay with their current employer; the firm decides whether or
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not to terminate the position.

In this section, we introduce the value function for a firm-inventor pair at the beginning

of a period, represented in a recursive formula. We drop the time subscript by using prime to

denote the next period variables. We first take as given the firm’s decisions related to R&D

and the choices governing the separation of the inventor-firm, collectively referred to as Ω.

We discuss the endogenous determination of these decisions below in Section 3.3.

We define V (·) of an inventor-firm pair as the present value of all cash flows received by

the shareholders of the firm plus the discounted lifetime wage income received by the inventor.

we define the net value, Ṽ (·) as the pair’s V (·) minus the liquidation price of capital:

V (p, k, λ, χ; Ω) =y + β(1− τ) · E{V (p′, k′, λ′, χ′; Ω′) + Σ1 (p′, k′, λ′, χ′; Ω′) · 1d=1 (13)

+ Σ2 (p′, k′, λ′, χ′; Ω′) · 1d6=1 · 1d=2},

Ṽ (p, k, λ, χ; Ω) ≡V (p, k, λ, χ; Ω)− ξkF , (14)

where y is the per-period return generated by the inventor-firm pair as defined in equation (3),

and β is the discount factor. The value of the firm-inventor pair equals the flow profit plus the

continuation value if the pair is maintained in the next period, plus the gain or losses from

separation. kF is the general knowledge capital that the firm can redeploy upon separation

as defined in equation (10). Our model features three types of separations as described in

section 3.1.3.τ captures the rate at which an inventor exits the market for exogenous reasons;

1d=1 is an indicator function for the inventor receiving an outside offer2 and subsequently

deciding to switch employment; 1d=2 corresponds to the firm’s decision to terminate the

current project; otherwise, we use d = 0 to denote no endogenous separation.

In equation (13), the expectation is taken w.r.t. two factors. The first is the stochastic

evolution of states for the current inventor-firm pair due to the uncertainty embedded in

their innovation output process, and the second is the pool of outside offers that the inventor

might receive. Σ1 (p′, k′, λ′, χ′) denotes the gain when the inventor takes the outside offer,

and Σ2 (p′, k′, λ′, χ′) corresponds to the value change when the position is terminated by the

2Outside offer arrives at the probability φ, which measures the mass of new firms actively searching to
hire, and thus the probability of an inventor receiving an outside offer.
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firm or due to exogenous inventor exit:

Σ1 (p′, k′, λ′, χ′; Ω′) = θ
{
Ṽ
(
p̊, k̊ + kI , λ̊, 0; Ω̊

)
− Ṽ (p′, k′, λ′, χ′; Ω′)

}
(15)

Σ2 (p′, k′, λ, χ′; Ω′) = −Ṽ (p′, k′, λ′, χ′; Ω′) , (16)

θ captures the inventor’s relative bargaining power—when an inventor switches employment.

When this happens, the inventor and his original firm will be compensated on par with

their outside options, which equals Ṽ (p′, k′, λ′, χ′). In addition, the inventor will capture

a θ fraction of the gain generated by reallocating to the new employer, which equals Ṽ (·)

generated by the new pair minus that if the inventor stays matched with the current employer.

When the inventor switches employment, the perceived match quality of the new pair is

given by equation (12), and initial knowledge capital is entirely general, which equals the

firm’s initial investment, k̊, plus the human capital that the inventor can bring to the new

employment, kI (as specified in equation 11). λ̊ measures the share of knowledge capital

contributed by the firm, which equals k̊

k̊+kI
.

3.3. Wage, R&D, and separation decisions

In this section, we delve into the wage negotiation between the inventor and the firm,

establishing how they divide the value they jointly create. This division is crucial, as it shapes

the optimal decisions for the firm and the inventor, based on their stake in the total value

generated.

Wage is determined in a sequential auction bargaining framework (Cahuc et al., 2006;

Jarosch, 2023), which builds on prior works of Postel-Vinay and Robin (2002a,b). We define

u as the best external offer (the one associated with the highest Ṽ ) that inventor j has ever

received during his employment with firm f , which we also refer to as inventor j’s bargaining

capital. A rookie inventor has a bargaining capital of zero when first joining the labor market.

Let W (·) and J (·) denote the value functions of the inventor and the firm, respectively,
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which satisfy:

W (p, k, λ, χ, u; Ω) = u+ θ
[
Ṽ (p, k, λ, χ; Ω)− u

]
, (17)

J (p, k, λ, χ, u; Ω) = ξkF + (1− θ)
[
Ṽ (p, k, λ, χ; Ω)− u

]
, (18)

where θ is the inventor’s relative bargaining power. Equations (17) and (18) imply that

the inventor will be compensated on par with his bargaining capital, plus θ share of the

surplus generated from maintaining the match with the current employer. The firm will be

compensated on par with its liquidation price, plus the remaining 1− θ share of the surplus.

When an inventor receives an outside offer, his bargaining capital, u, evolves as follows:

u′ =


u if u > Ṽ

(
p̊, k̊ + kI , λ̊, 0; Ω̊

)
,

Ṽ
(
p̊, k̊ + kI , λ̊, 0; Ω̊

)
if Ṽ (p, k, λ, χ; Ω) ≥ Ṽ

(
p̊, k̊ + kI , λ̊, 0; Ω̊

)
> u,

Ṽ (p, k, λ, χ; Ω) if Ṽ
(
p̊, k̊ + kI , λ̊, 0; Ω̊

)
> Ṽ (p, k, λ, χ; Ω) .

(19)

Intuitively, an inventor can initiate a negotiation with the employer only if there is a

credible threat (receiving an outside offer). He will do so only if the outside offer beats

his current bargaining capital, leading to better compensation upon the wage negotiation.

More specifically, case one of equation (19) suggests that if the net value generated from

the inventor taking the outside offer is lower than his current bargaining capital, then the

inventor will choose to do nothing, in which case, his bargaining capital stays unchanged.

In the second case, if the outside offer is better than the inventor’s bargaining capital, the

inventor will initiate a wage negotiation with the current employer. The current employer

will make a counteroffer, where the inventor will be compensated on par with the entire net

value generated from taking the outside offer, which forms the inventor’s new bargaining

capital, plus θ share of the surplus. Note that in this case, the outside firm cannot match

this offer because, with any θ > 0, it would entail the outside firm’s value J to fall below its

liquidation price. This offer is sustainable for the current inventor-firm pair, as both parties

enjoy a positive surplus in addition to their respective outside options. If the outside offer

generates a high Ṽ exceeding that created by the current inventor-firm pair, the current firm
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will be unable to counter. Hence, the inventor will separate from the current employer and

join the new firm, in which case, he uses the net value generated by his current employment

as his bargaining capital with the new employer.

This above process implies that the inventor will accumulate bargaining capital, which

allows him to move up to better-paying positions gradually. However, an exception exists

when the current firm-inventor pair creates a strictly positive Ṽ , but it falls below the

inventor’s bargain capital u. In this case, without lowering the inventor’s bargaining capital,

the firm would end up with a J below its liquidation price. However, it is also sub-optimal for

the firm to liquidate because the pair still creates a positive net value. In this case, we allow

the firm to initiate a negotiation with the inventor such that the entire net value created

accrues to the inventor, and the firm is just indifferent between liquidating the position or

not, in which case, we assume the position will be maintained3.

When the net value of the current inventor-firm pair falls below zero, no u > 0 exists that

permits the firm to achieve a J(·) equivalent or greater than its liquidation price. Consequently,

the firm will liquidate the project. The following summarizes the inventor-firm’s endogenous

separation decision:

d =


1 if Ṽ

(
p̊, k̊ + kI , λ̊, 0; Ω̊

)
> Ṽ (p, k, λ, χ; Ω) ,

2 if Ṽ (p, k, λ, χ; Ω) < 0,

0 if otherwise.

(20)

This implies that a separation between the inventor and the firm only occurs if the net

value of maintaining the match is lower than that generated by matching the inventor with

the prospective new employer or if the net value is strictly below zero. Given the R&D

expenditure and scope choices made by the firm and the wage negotiation process, such a

separation decision is bilaterally efficient, serving the best interest of both the firm and the

inventor concurrently.

3This situation can be triggered when the posterior of the match quality, p′, is adjusted downward sharply
due to low current-period output. Allowing the firm to lower the wage while maintaining the position helps
us to ensure that job termination decisions in our model are always efficient, conditional on the current states
and policies
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Finally, we analyze the firm’s optimal decisions on R&D expenditure and specificity. For

an incumbent firm, these choices are made to maximize its value J :

{i, ω} = arg max J(p, k, λ, χ, u; Ω). (21)

These choices related to firms’ R&D strategies, along with the separation decision described

in equation (20) close the loop for the endogenous determination of Ω.

For a new entrant in the industry, after successfully recruiting a seasoned or novice

inventor, the firm will choose the amount of knowledge capital to purchase at the market

price ξ to maximize the value of the firm net any investment costs:

k̊ = arg max J(p̊, k̊ + kI , λ̊, 0, u; Ω̊)− ξk̊. (22)

3.4. Stationary equilibrium

For each investor-firm pair, their continuation value is forward-looking. It depends on

firms’ choices on future R&D expenditure and specificity, also considering potential gains

from future separations. The expected gain of separation, in turn, depends on the firm’s

liquidation value and the outside opportunities available to the inventor. We use Γt to denote

the distribution of incumbent inventor-firm pairs and new entrants, and we use P Γ to denote

the probability law that governs the transition of Γ :

Γt+1 = P Γ(Γt) (23)

A stationary equilibrium exists if the following conditions are satisfied:

1. All incumbent inventor-firm pairs follow the optimal separation decision described in

equation (20).

2. All incumbent firms make the optimal R&D expenditure and specificity choices as

described in equation (21),

3. All entrants with accepted offers choose the optimal amount of knowledge capital to

acquire as described in equation (22).
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4. All agents have rational expectations of the other agents’ actions in the economy.

5. The market for knowledge capital clears—the demand by new entrants equals the

supply by firms who experience inventor turnovers.

6. All new entrant firms break even in expectation.

7. The probability law governing the evolution of the states, P Γ, is consistent with agents’

optimal decisions.

8. The distribution of firms and inventors is stationery, Γt+1 = Γt.

3.5. Model mechanism

The model features a labor-based tradeoff when firms choose the type of innovation

activities to engage in. If the firm pursues specific innovation, the cost is the loss of specific

knowledge capital in the event of an inventor turnover; the benefit is that it lowers the

inventor’s general human capital and, thus, the value of his outside opportunities. As a result,

separation becomes less likely, and the firm can retain a larger share of the value creation.

Importantly, this trade-off is time-varying. When the current perceived match quality is low,

separation (or job termination if the inventor does not receive an outside offer) is likely, and

the firm is more concerned about maintaining flexibility; when the current perceived match

quality becomes high, employee retention and rent splitting become the firm’s first-order

consideration, especially given that the inventor could have accumulated high levels of bargain

capital over the time. The firm will optimally tilt its innovation activity to a more specific

spectrum in anticipation of the labor market effect.

4. Data and Measurements

4.1. Data on patents and inventors

Patent data are obtained from the United States Patent and Trademark Office (USPTO).4

The database provides detailed patent-level records on nearly seven million patents granted

4We obtain the patent data from the USPTO PatentsView platform, accessible at https://www.

patentsview.org/download/.
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by the USPTO between 1976 and 2020. It includes information on the patent assignee and

on the patent’s application and grant year. The data on individual inventors are also from

PatentsView. These data are based on information from the USPTO patent applications

and encompass around three million inventors between 1975 and 2020. The dataset contains

disambiguated inventor names and identifiers, which permit us to track successful inventions

and careers of inventors across time and employers. Inventor age data are from Kaltenberg

et al. (2021), and the data are collected by the authors through a wide data collection effort

using directory websites, Radaris, Spokeo, and Beenverified.

This database is linked to Compustat using the bridge file provided by NBER (up to the

year 2006) and KPSS’s data repository.5 For later years, we complete the link using a fuzzy

matching method based on the company name, basic identity information, and innovation

profiles, similar to Ma (2020), Bernstein et al. (2021), and Ma (2021). Many firm-level

analyses focus on US public firms between 1986 and 2016. Standard firm-level information is

obtained from Compustat in this case, and variable definitions are provided in the Appendix.

To link inventors and their employers, we use the patent assignment information. For

example, we define that inventor i works in Firm f in year t if i applied for a patent in year

t that is assigned to firm f . If two or more years pass between two patent filings, and if the

employer inferred from these two filings are the same, we impute the employer for all the

years in between as this employer. This information can also allow us to identify job switches.

For example, if Jane Smith filed a patent with Firm A in 1999 and one with Firm B in 2000,

Jane Smith is designated as an employee of Firm A in 1999 and as an employee of Firm

B in 2000. If the employers change between two filings that are two or more years apart,

we assume that the employment transition between the two firms occurs at the midpoint

between the patent application years. Inventors are included in the sample for their entire

active career as an inventor, defined as the years between their first and last patent filings.

5The extended data for KPSS can be accessed at https://github.com/KPSS2017/

Technological-Innovation-Resource-Allocation-and-Growth-Extended-Data.
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4.2. Measuring generality of innovation and human capital

Central to our analysis, for each patent p, we observe all the citations it makes to prior

patents; similarly, we also observe all the citations it receives from future patents up to the

year 2020. For the former, those patents cited by p can be considered as the prior arts of

p, as they capture the broad set of knowledge and technologies used in developing this new

technology p—we call these backward citations made by p. On average, each patent makes

fifteen backward citations. For the latter, we observe all cases when p is cited by a successfully

granted patent and the timing of those citations. These are forward citations received by p.6

A wide variety of citation-based measures can be defined and computed in order to

examine different aspects of patented innovations and their links to other innovations. We

have computed and integrated into the data “Generality” as suggested in Trajtenberg et al.

(1997) and Hall et al. (2001).

Generalityp = 1−
∑
j∈J

Citation2
pj, (24)

where Citationpj denotes the percentage of citations received by patent p that belong to

patent class j, out of J patent classes (note that the sum is the Herfindahl concentration

index). Thus, if a patent is cited by subsequent patents that belong to a wide range of fields,

the measure will be high, whereas if most citations are concentrated in a few fields, it will be

low (close to zero). Thinking of forward citations as indicative of the impact of a patent, a

high generality score suggests that the patent presumably had a widespread impact in that it

influenced subsequent innovations in a variety of fields (hence the “generality” label).

Generality varies across industries. The traditional fields of Mechanical and Others are

at the bottom in terms of generality, whereas Computers and Communications are at the

top, with Chemical and Electrical and Electronics in between. Surprisingly perhaps, Drugs

and Medical is also at the bottom. Also, somewhat surprisingly, Chemical (that we regard

as a traditional field) stands high. The fact that Computers and Communications scores

highest in terms of generality fits well the notion that this field may be playing the role of a

6The forward citation process has a well-known right-truncation problem (Hall et al., 2001), because
patents, particularly recently approved ones, could receive many citations in the unobserved future. We will
discuss this issue in the context of the analysis.
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“General Purpose Technology” (see Bresnahan and Trajtenberg, 1995) and the centrality of

different fields in innovation network (Acemoglu et al., 2016; Liu and Ma, 2021). Likewise,

the low scores of Mechanical and Others correspond to expectations, in terms of the low

innovativeness and restricted impact of those fields. In that sense, this constitutes a sort of

“validation” of the measures themselves.

At last, we want to note that the construction of generality depends, to a large extent,

upon the patent classification system, and hence there is an inherent element of arbitrariness

in them. Thus, a “finer” classification within a field, in terms of the number of 3-digit patent

classes available, will likely result in higher generality measures, and one may justly regard

that just as an artifact of the classification system (that may be the case for example with

Chemicals). In this paper, we will use the International Patent Classification (IPC) system,

which includes more than six hundred classes.

The Generality measure has been constructed and discussed at the level of each patent p.

It can intuitively be aggregated to the inventor-year (it) level by averaging among all patents

that inventor i produces in year t. We can also do so at the firm-year (ft) level. Those are all

properties of flows of new innovation production. We can also construct the human capital

(for an inventor) or knowledge capital (for a firm) by aggregating among patent up to year t.

4.3. Summary statistics

In Table 1, we report summary statistics of our sample. We report both at the inventor

level (Panel A), at the patent level (Panel B), and then at the firm level (Panel C).

[Insert Table 1 Here.]

4.4. Stylized facts

Fact 1: Inventor’s patents become less and less general over time (both in terms of inventor

age and inventor’s tenure in a firm).

[Insert Figure 1 Here.]

Figure 1 shows that for a given inventor, innovation generality decreases with both age

and tenure within a firm. This effect is robust to the subsample of inventors who frequently
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patent during the covered sample period.

Fact 2: Inventors with more general human capital have higher job transition rates.

[Insert Figure 2 Here.]

Figure 2 shows the relation between inventor mobility and inventor general human capital

(upper panel) and between inventor mobility and inventor age (bottom panel). The upper

panel demonstrates that inventors with more general human capital have higher mobility.

The bottom panel demonstrates a more nuanced message—younger and older inventors have

lower mobility, while inventors between the age of 35 to 40 have the highest mobility.

Fact 3: General human capital is associated with more general patents in the future.

[Insert Figure 3 Here.]

Figure 3 shows that at both inventor and firm levels, more general human capital, as

captured using past patent generality, is associated with more general innovation in the

future.

Fact 4: Inventors become more productive after changing to a new job.

[Insert Figure 4 Here.]

Figure 4 shows that after an inventor changes his/her job, conditional on that transition,

they become more productive. This result is robust to different measures of inventor

productivity, including patent counts and forward citations of produced patents.

5. Estimation

In this section, we present the model estimates and discuss the intuition behind the

estimation process.

To facilitate the estimation, we make two extensions to the baseline model. These

extensions do not change the main tradeoff described in Section 3.5. They help us to account

for additional factors pertaining to firms’ innovation decisions, thus permitting closer matches
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on the related empirical patterns. We start by re-defining the knowledge-innovation function,

Φ(·) as follows:

Φ (kj,f,t, χj,f,t, rj,f,t, ωj,f,t) =
(
e−b·|χj,f,t−ωj,f,t| · kj,f,t

)1−ρ · (rj,f,t)ρ , (25)

where |χj,f,t − ωj,f,t| represents the “distance” between the current innovation scope and the

scope of the accumulated knowledge capital. Given the current period χj,f,t, if a firm and

inventor engage in innovation activities more ”aligned” with their accumulated knowledge, it

enables more efficient utilization of existing knowledge, leading to higher outputs. Conversely,

if the alignment is poor, that leads to a productivity “discount” of existing knowledge. The

parameter b controls the strength of the ”alignment” effect, thereby allowing us to more

precisely match the persistence of innovation scope in the data, which can be partially driven

by such an ”alignment” effect.

Next, we extend the baseline model by permitting firms to have varying comparative

advantages with respect to different scopes of innovation. To this end, we modify the return

of innovation activities (equation 3) into:

yj,f,t = π · nj,f,t − ecj ·ωj,f,t · rj,f,t − f. (26)

For any given firm j, a negative cj implies that the firm holds a comparative advantage in

conducting more focused research, leading to innovation in a narrowly defined technological

category, while a positive cj suggests the opposite. It is crucial to acknowledge that our main

mechanism, outlined in section 3.5, does not depend on general and specific innovations having

differing cost efficiencies. However, introducing this heterogeneity enables our model to align

more accurately with the data. Akcigit and Kerr (2018) provides evidence indicating that

firms with varying sizes and ages possess comparative advantages in generating innovations

with varying scopes. Hence, by explicitly accounting for such comparative advantages, we are

able to better match the model to data and isolate the decisions of firms’ optimal innovation

scope that are driven by our novel, labor-related tradeoff.

More specifically, we model cj as being drawn from a normal distribution with mean zero

and variance σ2
c ; that is, cj ∼ N(0, σ2

c ), and it is time-invariant for a given firm. The cost
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structure closely follows that in Akcigit and Kerr (2018).

5.1. Identification

We estimate the model parameters using the Simulated Method of Moments (SMM), which

chooses parameter values that minimize the distance between the moments generated by the

model and their counterparts in the data. In this subsection, we present the data moments

employed in the estimation and explain how they help identify the model parameters.

As a preliminary step, we set the discount factor β to 0.9, a value commonly used in

the literature. We calibrate the exogenous job dissolution probability, τ , so that the model

predicts an average dropout rate of 6% among inventors, which includes firms’ endogenous

termination of unprofitable positions and exogenous job dissolution. We set the entry cost, ι,

so that the model implies an annual job creation rate, φ, that also equals 6%. We set the

return to innovation outputs, π, to 6.8 to match the average market value of patents. The

unconditional probability of high match quality, denoted as q, is set to 0.5, and thus, we

effectively discretize the match quality in the model based on the median of its empirical

counterpart. Lastly, we set θ, the relative bargaining power of inventors, to 0.5, which is

consistent with the estimated bargaining power of highly skilled workers in Cahuc et al.

(2006). The remaining 11 parameters are estimated within an SMM system. These parameters

are summarized in Table 2. Parameter identification in SMM requires choosing moments

whose predicted values are sensitive to the model’s underlying parameters. Our identification

strategy ensures that there is a unique parameter vector that makes the model fit the data

as closely as possible.

First, we focus on moments related to the observed patent counts. We match patents’

mean and standard deviation at the inventor-firm level to identify a and `. When a becomes

higher, it increases both the level of patents and the dispersion of patents among inventor-

firms. Conversely, a rise in ` implies that it is more difficult for high-productivity pairs to

gain additional knowledge, thereby shrinking the variation of patent outputs in the cross

section. We rely on the autocorrelation of patent counts to identify δ, the depreciation rate

of knowledge capital. We calculate the average number of patents filed by novice inventors

during the first three years of their employment spell to identify k̊, which controls their
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initial human capital. We calculate the fraction of inventor-firm-years with zero patent to

identify the fixed cost parameter, f . With an increment in f , a firm will find it increasingly

more costly to sustain low productivity years, prompting more timely job terminations and,

consequently, a reduction in the occurrence of zero patent years.

We then focus on features related to patent specificity. We use the auto-correlation of

patent generality to identify b, which captures the importance of “scope alignment” in firms’

innovation production function. Higher b implies that it enhances productivity when the

scope of current innovation is closely aligned with that of pre-existing knowledge, leading

to high persistence in firms’ specificity decisions. To identify the heterogeneity in firms’

innovation expertise, we focus on the dispersion of innovation specificity at the firm level. If

firms have varied comparative advantages with respect to different innovation scopes, it will

translate into more substantial variations in their realized specificity choices.

To identify the next class of parameters, we focus on moments pertaining to firms’ R&D

expenditure. We use the average R&D expenditure to patent output ratio,
e
cj ·ωj,f,t ·rj,f,t
πnj,f,t

to

identify the parameter η. A higher η suggests that the firm can internalize more of its R&D,

leading to enhanced incentives and increased R&D-associated expenses. We further include

the standard deviation of the R&D expenditure ratio. ρ controls the elasticity of R&D in the

firm’s production function; we construct its data counterpart by regressing patent counts on

log R&D expenditure and use the regression coefficient as the identifying moment.

Lastly, we come to parameters that govern the match quality. We use the average inventor

relocation rate to identify κ. Our model suggests that job relocation occurs when inventors

move to prospective employers that offer a better match quality. An increase in the value

of parameter κ indicates that match quality plays a more significant role in the innovation

production process. This, in turn, provides inventors with a stronger incentive to relocate,

leading to a higher mobility rate. If the value of κ falls to zero, it means that the innovation

output is not affected by the current match quality. In such a scenario, inventors would

strictly prefer to stay with their current employer to maintain the specific knowledge capital

they have accumulated over the past. As a result, the model would predict a mobility rate

of zero. Next, conditional on a separation taking place, we count the number of years that

an inventor works for the firm until the separation happens. This conditional employment
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duration helps to identify the precision of the signal, σv. If σv is small, it implies that an

inventor can receive a very precise signal about whether he is a good match with the current

employer or not, in which case, he always stays with the current employer if the match is

good quality and separates immediately if the match quality is bad. Thus, the model will

generate short employment spells for those who eventually decide to take an outside offer.

Finally, we include a moment corresponding to the change in patent counts around inventors’

job relocation, defined as:

∆nj,f,t =
nj,f,t+1 + nj,f,t+2 + nj,f,t+3

3
− nj,f,t−1 + nj,f,t−2 + nj,f,t−3

3
, (27)

where year t is the year when an inventor changes employment. The change in patent

counts reflects the impacts of inventors migrating to positions that better fit their talent.

Furthermore, the change can also be driven by investors forfeiting their specific human capital

amid the job transition process; the magnitude of the effect is contingent on the historical

specificity choices made by the firms. Therefore, we match this moment to ensure that

our model can also accurately predict the relative magnitudes of these important channels.

Note that we omit year t from our calculation of ∆n to avoid any mechanical changes in

productivity caused by the transition disruptions.

Table 2 presents the parameter estimates for the model.

[Insert Table 2 Here.]

In Table 3, we compare the empirical and model-implied moments.

[Insert Table 3 Here.]

5.2. Re-scaling the variables to match model setup

In our model, patents do not vary in value and quality, but such variations exist in the

patent data. For example, as documented in Kogan et al. (2017), the market value of each

patent is, on average, 10 million (in 1982 dollars), and the standard deviation is 32 million.

To account for this dimension, we re-scale our patent counts to reflect their value. We

do not keep track of variations in patent market value. Instead, we adjust our measure by
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assigning a higher patent count to the firm-inventor pair if the output patents are of higher

value. For example, a 10× v million patent can be viewed as a portfolio of ten patents, each

with a v million market value. We choose the unit of measurement, v, to match the average

patent value in industries with the lowest per-patent value.

We also need to adjust the number of inventors. For example, if a patent is assigned to

10 people, then each one of them is considered to have contributed to 0.1 patent in the given

year. We perform this adjustment because we want the patent measure to be at the inventor

level. Similarly, we calculate the per-capita R&D expenses as the average R&D expense, to

be consistent with the way that we count patents.

6. Model Implication

6.1. Inventor turnover and the value of specificity

As a preliminary step, we verify in Figure 6 that inventors who have accumulated high

levels of human capital and those who have high perceived match quality with their current

employers exhibit low mobility. Their mobility will be amplified if they receive a good outside

option, as suggested by a noisy signal indicating a high probability of a good match between

the inventor and the potential outside employer. On the opposite side, their mobility will be

dampened if a larger fraction of the human capital that inventors accumulate is firm-specific,

making it more costly to redeploy and leading to a higher loss in the event of a turnover.

After validating the primary mechanisms in the model, we next examine the implications

on the value of firm-specific knowledge capital relative to that with a more general scope. To

facilitate the comparison, we first define a “specificity premium” measure at the firm level:

EJ (p′, k′, λ′, χ′;u′|p, k, λ = 0.5, χ = 1;u = ū)− EJ (p′, k′, λ′, χ′;u′|p, k, λ = 0.5, χ = 0;u = ū)

EJ (p′, k′, λ′, χ′;u′|p, k, λ = 0.5, χ = 0;u = ū)
.

(28)

Intuitively, the measure takes a firm-inventor pair with an average level of bargain capital

(u = ū), and where the firm and inventor have accumulated an equal amount of knowledge

capital (λ = 0.5), and asks what would be the percentage change in the firm’s continuation

value if we counterfactually reset all of the knowledge capital to be firm-specific, relative to
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the case if we counterfactually make the knowledge capital base to be entirely general. If

the resulting change is positive, it implies that having firm-specific knowledge capital carries

a “premium” from the firm’s perspective, leading to a higher surplus received by the firm;

otherwise, knowledge capital specificity is associated with a discount that can lower firm

value.

Our results in Figure 7 show there is no “one size fits all” story— firm-specific human

capital can carry either a “premium” or a “discount”, depending on the current state of the

inventor-firm pair. On the one hand, when the perceived match quality of the inventor-firm

pair is low, and they have relatively little knowledge capital, that implies a high separation

probability, partially due to the firm’s decision to terminate. As a result, maintaining

flexibility is valuable for the firm. On the other hand, when the match quality and knowledge

both increase, the separation probability declines while the value created by the pair hikes,

making employee retention and rent-splitting the primary concerns, thereby increasing the

value of specificity. The results thus highlight the change in firms’ preference regarding the

type of innovation activities to pursue as their relationship with the inventor evolves.

[Insert Figure 7 Here.]

Figure 8 further illustrates how the value of a firm changes continuously with varying

levels of knowledge capital specificity. This analysis considers three distinct scenarios, each

reflecting a combination of an inventor-firm pair’s perceived match quality and knowledge

capital: high, medium, and low. These scenarios represent cases where worker retention

concerns outweigh the separation cost, when these concerns are equally important, and when

worker retention and subsequent rent-splitting decisions become predominant. Consistent

with the results from Figure 7, the firm’s value is monotonically increasing/decreasing in the

knowledge capital specificity when either the worker retention or the separation cost concern

dominates. In the intermediate case, when the two are of comparative significance, the change

in firm value tends to be less pronounced as knowledge capital specificity varies. Moreover,

this scenario admits an interior optimal knowledge capital specificity that optimally balances

the labor-based tradeoffs and delivers the highest value for the firm.

[Insert Figure 8 Here.]
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6.2. Knowledge specificity over life cycle

Next, we examine how firms’ varying preference for innovative activities relates to inventors’

tenure. As inventors’ tenure with a firm increases, they accumulate more human capital by

learning from previous innovation activities. In addition, the perceived match quality also

increases due to the selection effect—long tenure with the current firm implies that this is

likely to be a good match (otherwise, he would have been terminated or out-hired by the

other firms in previous years). These forces imply that the inventor-firm pair will move from

the bottom right corner towards the top left corner of Figure 7.

Accompanying such a move, Panel A of Figure 9 shows that the inventor’s mobility first

rises and then decreases gradually over time. When an inventor newly joins a firm, there

exists great uncertainty regarding his fit with the firm. Even if he fails to become productive

immediately, it could reflect bad luck instead of a bad match. Therefore, the firm would

tolerate initial failures before finding a turnover warranted. As the inventor’s tenure with the

firm increases, the luck component in his performance gets washed out, and the firm starts

to have a more precise estimate of its match quality with the inventor. They would fire an

inventor if the match quality is sufficiently bad or choose not to make a retention offer if the

worker is poached by an outside firm where he seems a better fit, leading to sharp increases

in the realized mobility. As inventors’ tenure keeps increasing, the match quality among

the remaining inventors grows due to selection, and their knowledge capital also increases,

leading to persistent mobility declines. We also plot the inventor’s cumulative probability of

making at least one job transfer within the next five years, which declines monotonically over

their life cycle.

[Insert Figure 9 Here.]

The above results imply that as inventors get more seasoned, maintaining the redeploya-

bility of knowledge capital becomes less important relative to other considerations, such as

retaining inventors and lowering the compensation costs, resulting in reduced attractiveness

of engaging in general innovations. This effect is amplified by an additional force, operating

through inventors accumulating outside offers over the years and building bargain capital. In

Figure 7, we hold the current period ν of an inventor constant (at µ̄) and allow the expectation
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of future bargain capital to change due to the arrival of outsider opportunities in the next

period. When we track an inventor over the life cycle, we recognize that his current bargain

capital itself also increases (almost) monotonically over the life cycle,7, Consistently, Panel B

of Figure 9 shows that as inventors become more seasoned, they keep receiving outside offers,

which they can use to bargain with their current employers. Hence, their bargain capital

grows, implying that firms must concede more rent to the inventors. Tilting innovation

in a more specific spectrum will help to alleviate this concern by reducing the portion of

knowledge capital that an inventor can bring to his next employment, thus reducing the value

of his outside employment opportunities. The less valuable outside options would, in turn,

weaken the inventor’s bargaining position, allowing the firm to extract a higher surplus.

In Figure 10, we partition inventors by their tenure with the current employers and plot

the model implied innovation specificity within each tenure quartile. The results reveal a

monotonic relationship. Quantitatively, as the inventors’ tenure grows from the bottom to the

top quartile, the specificity of innovation projects they engage in will shift correspondingly by

almost two quartiles. This shift is significant and aligns with the lifecycle patterns observed

in Figure 9.

[Insert Figure 10 Here.]

6.3. Counterfactuals

Quantitatively, how much of the observed variations in innovation specificity can be

attributable to firms actively using such decisions to influence workers’ mobility and outside

opportunities? We perform a series of counterfactual analyses to answer this question,

with the results presented in Table 4. In row (1), we reproduce the results in Figure 10,

reporting the innovation specificity for inventors with varying tenure. In row (2), we explore

a hypothetical scenario: what if the liquidation of specific knowledge capital came without

any discount? In this case, the firm need not be concerned about increased separation costs

even if they engage the inventor in highly specific projects. In row (3), we consider another

counterfactual scenario where we shut down firms’ incentives to retain and bargain with

7We say it is “almost” because there are rare incidences when the pair is close to a termination boundary
when a firm can initiate a negotiation with the inventor to lower his surplus.
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inventors by assuming that they design the innovation specificity to maximize the lifetime

value of the inventor-firm pair (V , as defined in equation 13), not just the portion that

accrues to firms’ shareholders. Under this premise, we let firms re-optimize their innovation

specificity and compare it against the prediction from the baseline model.

[Insert Table 4 Here.]

The results in Table 4 suggest that in the baseline model, the potential separation cost

induces firms to assign junior inventors to perform general tasks, even when certain firms

might have a comparative advantage in more specialized areas of innovation. Conversely, for

more seasoned workers, the desire to influence their outside options and retain them more

effectively leads firms to involve them in overly specific projects. This effect is particularly

pronounced among inventors in the top tenure quartile. Quantitatively, their innovation

projects become 32% more specific compared to the baseline model. By comparing the

outcomes in rows (2) and (4) to those of the baseline model, we come to the conclusion that

the matching and incentive frictions in the labor market can distort the type of investment

and the resultant accumulation of human capital. This effect varies with the career stages of

workers and is most pronounced among senior employees with the highest levels of human

capital.

We further explore the value implication of firms’ innovation specificity choice, quantifying

how it affects the distribution of value between inventors and firms. To answer this question,

we perform additional counterfactual analyses, wherein we exogenously change the innovation

specificity for firms in our simulated economy by 25% to 100%. In the latter scenario, we

essentially make innovation entirely general. The results are presented in Table 5, indicating

that firm value decreases as we change the scope of their innovation. This result is unsurprising

since we are moving further away from firms’ ”optimal” innovation specificity, which they

choose endogenously in the baseline to maximize value. When the innovation specificity

decreases, however, it enhances inventors’ outside options, leading to increased wage income

for them. When we add up the inventor and firm values, the sum initially rises as we decrease

specificity, followed by a monotonic decline. This suggests that firms are directing their

inventors towards a somewhat excessively narrow scope.
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[Insert Table 5 Here.]

7. External Validation: The Effect of Noncompete Agreement

In this section, we examine whether the type of R&D projects that firms pursue vary in

response to shocks to labor mobility and their employee retention concerns. This reduced-form

analysis shed light on our main model mechanism that firms actively choose their innovation

scope to influence the labor-based tradeoff.

To explore variation in labor market mobility and firms’ concerns about employee retention,

we rely on changes in the enforceability of noncompete agreements (NCs) across US states,

which restricts labor mobility and lowers the probability that a worker chooses to leave a firm.

In our model, there is a negative relation between age/tenure and the specificity of innovation,

and this is because inventors who have stayed in a firm longer have a lower probability of

future separation—more specific investment could further lower the probability that such

good-quality worker chooses to leave. With stricter NC enforcement, firms are less worried

about good-quality workers leaving, making it less rewarding to use R&D investment (and

the resulting knowledge capital) to retain good-quality workers. In other words, it would be a

confirmation of our mechanism if we find the age/tenure-innovation scope relation becoming

weaker after NCA enforcement strengthens.

The empirical design follows Jeffers (2019), who compile a list of changes in the enforce-

ability of NCs that mainly come from state-level court rulings that overturn precedent and

cause a sudden change in the enforceability of NC contracts. In column (1) of Table 6, we

first show that with stricter enforcement of NCs, there is a significantly lower annual job

transition rate among inventors. The 0.6 percentage points in economic magnitude translated

to a 15% lower from the base transition probability. This evidence is consistent with prior

findings on the impact of NCs and validates the relevance of this variation in our empirical

setting.

[Insert Table 6 Here.]
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Our key empirical analysis is based on the following model:

PatentGenerality = α + β1 · Tenure/Age+ β2 · Tenure/Age ·NC + θ ·NC + ε. (29)

In this model, β1 tests our model prediction pertaining to the age/tenure-specificity

relation (similar to that in Figure 1). β2 tests the impact of changes in labor mobility and

retention concerns. In columns (2) and (3), we show that tenure in a firm and inventor

age are both negatively related to patent generality, consistent with our model mechanism.

Importantly, we show that this relation is mitigated when NC enforcement becomes stricter,

flattening the relation by roughly 25%.

Our results further suggest that NCs have a negative impact on generality for new and

young workers (e.g., tenure = 1); while the effect is positive on older workers. For example, for

a worker with tenure equal to 5, the net change of generality would be 5×0.012−0.020 = 0.040.

Therefore, the aggregate impact of NC enforcement on each firm (not inventor-firm pairs) is

likely to differ based on the worker composition.

To put the results in a broader perspective, our model sheds light on the nuances in

the mechanisms behind the firm responses following changes in the enforcement of NCs. In

particular, our results show the heterogeneous effects among different groups of workers with

varying seniority and outside opportunities because they have different departure probabilities

and knowledge capital. So, a broad takeaway is that for NC-related policy discussions, one

needs to take into account firm-level motives for knowledge and labor retention due to labor

composition.

8. Conclusion

Labor market forces are important in explaining firm investment decisions and have long-

term consequences on the economy. When firms choose the type of innovation activities to

engage in, they tradeoff the benefit of increased asset redeployability from general innovation

with the associated higher employee retention cost. Such choices, in turn, influence the type

of knowledge capital that workers will accumulate and their subsequent innovation activities.
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Figure 1. Innovation Generality and Inventor Experience
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Figure 2. Inventor Mobility, Experience, and Human Capital Generality
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Figure 3. Inventor General Human Capital and Firm’s Future Patent Generality
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Figure 4. Productivity Around Transition
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Figure 5. Law of Motion for Knowledge Capital
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Figure 6. Match Quality, Knowledge Capital, and Inventor Turnover

This figure illustrates the mobility of inventors using heat maps. Mobility is measured as the probability that
an individual inventor leaves the current position.

45



Figure 7. Knowledge Capital Specificity Premium

This figure illustrates the knowledge capital specificity premium using a heat map. The knowledge capital
specificity premium is defined in Equation (28).
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Figure 8. Firm Value and Knowledge Capital Specificity

This figure illustrates the relationship between firm value and its begin-of-period knowledge capital specificity.
High, medium, and low perceived match quality (knowledge capital) corresponds to firms falling in the top,
middle, and bottom terciles of the simulated model economy, based on the partitioning variables.
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Figure 9. Inventor Turnover, Outside Option, and Tenure

This figure illustrates how inventors’ transition probability and the value of their outside option evolve with
their tenure.
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Figure 10. Innovation Specificity over Varying Career Stages

This figure illustrates how inventors’ innovation output and the specificity of their innovation
activities evolve with their career stages. Inventors are divided into four quartiles based on
their tenure with their current employers. The left-hand-side axis corresponds to the average
innovation output among inventors in a tenure group; the right-hand-side axis corresponds to
the quartile ranking of their innovation specificity.
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Table 1. Summary Statistics

This table summarizes key variables at the inventor-, patent-, and firm-levels.

N Mean Median Std.Dev

a. Inventor Level (Inventor-Year Obs)
Inventor Age 7692114 42.85 42.00 9.69
Tenure in Firm 7692114 5.10 4.00 4.46
Transition 6595233 0.08 0.00 0.27
Number of Patent Produced (Full Credit) 7692114 0.80 0.00 1.73
Number of Patent Produced (1/N Credit) 7692114 0.31 0.00 0.72
Total Past Patent Produced 7692114 2.45 1.00 5.27
Generality 2938761 0.39 0.44 0.28
General Human Capital 7597431 0.40 0.43 0.24

b. Patent Level (Patent Obs)
Year 6913074 2002.36 2004.00 11.66
Total Backward Citation 6913074 14.67 6.00 56.47
Total Forward Citation (up to 2021) 6913074 13.03 3.00 40.45
Generality 4965036 0.37 0.44 0.29

c. Firm Level (Public Firm-Year Obs)
No. of New Patents 282369 11.57 1.00 98.88
Total Forward Citations of New Patents 282369 153.81 0.00 1432.49
New Patents’ Generality 137542 0.39 0.42 0.24
R&D/Assets 279914 0.07 0.04 0.16
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Table 2. Parameters

In this table, we report the model parameter estimates. Panel A presents statutory parameters
and those whose values can be calibrated directly from the data. Panel B reports the value
of parameters we estimate via the Simulated Method of Moments (SMM).

Panel A. Statutory and Calibrated Parameters

β Discount factor 0.9

θ Workers’ bargaining power 0.5

q Unconditional probability of an good match 0.5

π Capitalized return per unit of innovation output 6.82

τ Exogenous rate of pair dissolution 0.03

φ Rate of new job creation 0.06

Panel B. Parameters Estimated via SMM

a Constant in knowledge production function (Eq 1). 0.53

` Curvature of knowledge accumulation (Eq 7). 0.76

δ Depreciation rate of knowledge capital 0.15

k̊ Initial human capital of novice inventors 0.05

f Fixed operating cost 0.24

b Controls the relationship between knowledge production and 0.08
the alignment of knowledge specificity (Eq 25)

σc Heterogeneity in firms’ specialization w.r.t innovation scopes 0.21

η Fraction of newly acquired knowledge embodied in the firm 0.69

ρ Elasticity of R&D in knowledge production function (Eq 25) 0.33

κ Controls the relationship between knowledge production and 1.14
firm-inventor match quality (Eq 1)

σv Standard deviation of the signal on outside offer 8.22
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Table 3. Moments Conditions

This table reports the simulated and actual moment conditions.

Moments Data Simulated

Average patent per inventor 0.8613 0.9271

Percentage of zero patent years 0.5640 0.5879

Variance of patent per inventor 0.7690 0.6851

Loadings of patent output on prior patent production 0.3001 0.2023

Dispersion of patent specificity at the firm level 0.1230 0.1293

Patent specificity persistence 0.5558 0.6247

Loadings of patent output on R&D investment 0.0600 0.0865

R&D per inventor 0.4779 0.3225

Variance of R&D per inventor 0.5210 0.5054

Frequency of job switches 0.0651 0.0703

Employment duration conditional on separation 4.7540 5.1729

Change of productivity after job switch 0.0962 0.1180

Patent output per novice inventor 0.6470 0.5083
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Table 4. Innovation Specification under Alternative Models

This table reports the predicted innovation specificity for inventors in varying tenure quarterlies
and under alternative model specifications. In row (1), we report the results under the baseline
model; in row (2), we examine the scenario where a firm incurs no discount when liquidating
its specific knowledge capital; row (4) corresponds to the scenario where the firm chooses its
innovation specificity to maximize the joint value of the firm and the inventor, instead of that
accruing to the firm’s shareholders only. In rows (3) and (5), we calculate the percentage
change in innovation specificity under alternative models, compared with their counterparts
in the baseline scenario.

‘

Tenure Q1 Tenure Q2 Tenure Q3 Tenure Q4 Overall

Baseline 0.5192 0.5661 0.6358 0.7313 0.6131

No separation cost 0.6128 0.6597 0.7124 0.7943 0.6948
(% change) (18.02%) (16.53%) (12.05%) (8.62%) (13.81%)

No rent splitting 0.4241 0.4416 0.4768 0.4929 0.4588
(% change) (-18.33%) (-22.00%) (-25.01%) (-32.59%) (-24.48%)
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Table 5. Innovation Specificity and the Value to Firms and Inventors

This table reports the results of counterfactual analysis, where instead of letting firms
optimally choose their knowledge capital specificity (χ), we force specificity to range from
zero to 75% of their chosen level. In each counterfactual scenario, we calculate the value of
the firm (J), the wage of the inventor (W ), and the value of the inventor-firm pair (V ). In
the bracket, we report the percentage of the total value claimed by the firm and the inventor,
respectively.

Baseline 75% ·χ 50% ·χ 25% ·χ χ = 0

Firm value 2.9928 2.8390 2.5721 2.3180 2.1248

Inventor wage 1.1683 1.4199 1.4646 1.6823 1.7318

Value of the pair 4.1611 4.2590 4.0367 4.0003 3.8566

Firm share 71.92% 66.66% 63.72% 57.94% 55.10%

Inventor share 28.08% 33.34% 36.28% 42.06% 44.90%
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