To earn a MBA x Biotechnology Industry concentration in the Full-Time MBA, Full-Time MS in Finance/MBA, JD/MBA, or LLM/MBA, you will earn twelve credits from the curriculum listed below.

Required MBA x Biotechnology Industry Courses

Provides an interdisciplinary, state-of-the-art introduction to biotechnology to students of the Master of Science in Biotechnology program. Covers the molecular foundations of biotechnology, molecular microbiology, receptor pharmacology, drug development processes, biotech process development and scale-up, drug approval and regulatory affairs, genomics, microarray analysis, proteomics, computational biology, molecular modeling, analytical biotechnology, and bioterrorism and biotechnology. 
BIOT 5120 | 3 credits
Covers the principles and concepts involved in the development of mammalian and other types of cell culture processes for the manufacturing of biopharmaceutical products such as monoclonal antibodies and recombinant proteins. Topics include protein expression and clone generation, batch and perfusion processes and media development, bioreactor operations and scale-up, and innovations in cell culture processes. Regulatory concepts include quality assurance in a cGMP environment.
BIOT 5631 | 3 credits
Explores the principles of experimental design and statistical analysis. Emphasizes research in the molecular and biological sciences and biotechnology. Topics include probability theory, sampling hypothesis formulation and testing, and parametric and nonparametric statistical methods.
BIOT 6214 | 2 credits
Focuses on the analytical methods used for the characterization of recombinant DNA-derived proteins for human therapeutic use. Combines the description of advanced analytical methods, in particular HPLC and mass spectrometry, with protein chemistry. An important aspect is the development of a method that can identify protein modifications that are present in a product as a result of biosynthetic modifications, contaminants, or degradative reactions. Provides an integrative overview of the role of analytical methods at the different stages of development and production of protein therapeutics including upstream (cell line development, cell culture), downstream (recovery and purifications), formulation development, stability studies, and clinical assay. 
CHEM 7317 | 3 credits
Course list changes each semester.
Any graduate level BUSN course | 1 credit

The curriculum is subject to change by D’Amore-McKim faculty. Please monitor for updates.